

# **Asteroid Mining**

# **Grade 12 – Planetary Science**

# Using the JPL Small Object Browser

Website: <u>http://ssd.jpl.nasa.gov/sbdb\_query.cgi</u> The following is a summary of the **tutorial**.

#### Part 1: Specify Search Constraints

Select the type of small-body you would like to investigate. There are 3 types of characteristics offered:

#### a) Limit by object type/group:

Object Group: Do you want Near Earth Objects (NEO's), Potentially Hazardous Asteroids (PHA's) or All Objects? Object Kind: check either asteroids or comets or All Objects Numbered State: check all objects

### b) Limit to select orbit classes:

If no classes are selected, the search is unrestricted. You may select any of the orbit class titles (in blue) for more information, research them online, and you may want to locate the orbit classes using this image.

# c) Limit by object characteristics:

This part is tricky. There are many combinations of physical parameters and orbital parameters. You may wish to consult outside resources such as <a href="https://en.wikipedia.org/wiki/Asteroid\_mining">https://en.wikipedia.org/wiki/Asteroid\_mining</a> and <a href="https://www.planetaryresources.com/2015/08/how-we-choose-our-asteroid-targets/">https://www.planetaryresources.com/2015/08/how-we-choose-our-asteroid-targets/</a>

You need to use operators such as:

| <       | less than the specified single "value"                         |
|---------|----------------------------------------------------------------|
| <=      | less than or equal to the specified single "value"             |
| >       | greater than the specified single "value"                      |
| >=      | greater than or equal to the specified single "value"          |
| range   | within the range specified (e.g. "4 9.2", "0.8-1.3", "-40:-2") |
| !=      | not equal to the specified "value"                             |
| REGEXP  | matching the specified "regular expression"                    |
| defined | the parameter is defined (has a non-NULL value)                |

#### Sciencenorth.ca/schools

not defined the parameter is *not* defined (NULL value) And when you have defined the parameter, select "Add  $\rightarrow$ "

For **physical parameters**, you may want to consider features such as: Diameter: the approximate diameter of the asteroid in km Example: "diameter" "<=" "1" (means diameter of less than or equal to 1 km)

Rotation Period: the time it takes for the body to rotate about its own axis in hours Example: "rot\_per(h)""<=""24" (means rotation period of less than 24 h)

Spectral Type (SMASS-II) and/or Spectral Type (Tholen): <u>Asteroid Spectral Types</u> Example: "spec. type (SMASS-11)" "=""X" (means spectral type X)

For **orbital parameters**, you may want to consider such features as: Perihelion (q): the closest distance to the sun (measured in AU) Example: "q""=""1" (means the object passes 1AU from the sun – this is the same as the distance from the sun to the Earth)

Inclination (i): the angle between the plane of the asteroid's orbit and the Earth's orbit (measured in degrees)

Example: "i" "<=" "1" (means that the object's orbit is tilted less than 1 degree with respect to the Earth's orbit)

Earth minimum orbit intersection distance (MOID (AU)): the distance between the closest points in the orbit of the object and the orbit of the Earth Example: "MOID (AU)" "=" "1" (means that the closest point between the object and the Earth is 1 AU (the distance between the Earth and the sun))

Period (in days or years): how long it takes for the object to orbit the sun once Example: "Period (d)" "=" "365" (means the period is 365 days (the same as the period of the Earth)

# Part 2: Output Fields

I suggest using the pre-defined field sets – either "asteroid – basic" or "comet – basic" And then "Append Selected"

# **Part 3: Format Options**

Leave on the default (HTML) and select "Generate Table" Be patient. You may need to try different combinations. Start with the most basic criteria and then add one constraint at a time to refine your list.

For example: A simple query for Near Earth Objects that are asteroids with a C-Type spectrum:



#### Led to only 9 objects:

| JPL HUME                                                                                                                      |                                           | California Institute of Technology   |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                         | TEOUN                | 2                    |                      |                |                     |                    |                    |
|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------|----------------------|----------------------|----------------------|----------------|---------------------|--------------------|--------------------|
|                                                                                                                               | EARTH                                     |                                      | SOLAR SYS                       | TEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STARS & G                          | ALAXIES                 | TECHN                | IOLOGY               |                      |                |                     |                    |                    |
| olar System                                                                                                                   |                                           |                                      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                         |                      |                      |                      |                |                     |                    |                    |
| ynamics                                                                                                                       |                                           |                                      |                                 | and the second s |                                    | 2.5                     | 1                    |                      |                      |                |                     |                    |                    |
|                                                                                                                               |                                           |                                      | the state                       | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A                                  |                         |                      |                      |                      |                |                     |                    |                    |
|                                                                                                                               | 2                                         |                                      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · .                                |                         | ·                    |                      |                      |                |                     |                    |                    |
| ODIES ORBITS EPH                                                                                                              | EMERIDES                                  | то 🕴                                 | OLS PH                          | YSICAL DAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TA DISC                            | OVERY                   | FAQ                  | SITE MAP             | I                    |                |                     |                    |                    |
| L Small-Body Databa                                                                                                           | ise Sea                                   | arch Er                              | ngine                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                         |                      |                      |                      |                |                     |                    |                    |
| efine Search ] Results: 9 ma                                                                                                  | atching ob                                | jects                                | Ŭ                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                         |                      |                      |                      |                |                     |                    |                    |
| Constraints: aste                                                                                                             | roids and                                 | NEOs an                              | d spec. type                    | = C (SMAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SII)                               |                         |                      |                      |                      |                |                     |                    |                    |
| object fullname                                                                                                               | а                                         | е                                    | i                               | node                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | peri                               | a                       | Q                    | period               | data-arc span        | condition code | # obs. used (total) | # obs. used (del.) | # obs. used (dop.) |
| ?                                                                                                                             | (AU) ?                                    | ?                                    | (deg) ?                         | (deg) ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (deg) 🤋                            | (AU) 🤋                  | (AU) ?               | (years) 🤋            | (d) ?                | ?              | ?                   | ?                  | ?                  |
| 14402 (1991 DB)                                                                                                               | 1.715                                     | 0.4021                               | 11.42                           | 158.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 51.30                              | 1.026                   | 2.41                 | 2.25                 | 6739                 | 0              | 425                 |                    |                    |
| 64 Davidharvey (1999 RH27)                                                                                                    | 2.849                                     | 0.5892                               | 4.54                            | 335.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 104.82                             | 1.170                   | 4.53                 | 4.81                 | 7564                 | 0              | 937                 |                    |                    |
| 65706 (1992 NA)                                                                                                               | 2.397                                     | 0.5571                               | 9.71                            | 349.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.19                               | 1.062                   | 3.73                 | 3.71                 | 8646                 | 0              | 298                 |                    |                    |
| 05774 (4000 LIT40)                                                                                                            | 1.404                                     | 0.3291                               | 13.59                           | 64.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50.01                              | 0.942                   | 1.87                 | 1.66                 | 9192                 | 0              | 593                 | 4                  | 4                  |
| 85774 (1998 0118)                                                                                                             |                                           | 0.4654                               | 17.38                           | 296.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 37.00                              | 0.613                   | 1.68                 | 1.23                 | 6273                 | 0              | 267                 |                    |                    |
| 136793 (1997 AQ18)                                                                                                            | 1.147                                     | 0.4034                               |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100.05                             | 0.026                   | 1.56                 | 1.39                 | 5281                 | 0              | 201                 |                    |                    |
| 136793 (1997 AQ18)<br>162567 (2000 RW37)                                                                                      | 1.147<br>1.248                            | 0.2501                               | 13.75                           | 333.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 133.25                             | 0.550                   | 1.50                 |                      | 0201                 |                | 201                 |                    |                    |
| 136793 (1998 0118)<br>162567 (2000 RW37)<br>175706 (1996 FG3)                                                                 | 1.147<br>1.248<br>1.054                   | 0.2501<br>0.3499                     | 13.75<br>1.99                   | 333.34<br>299.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 133.25<br>24.01                    | 0.685                   | 1.42                 | 1.08                 | 6560                 | 0              | 1620                | 4                  |                    |
| 136793 (1997 AQ18)<br>162567 (2000 RW37)<br>175706 (1996 FG3)<br>370061 (2000 YO29)                                           | 1.147<br>1.248<br>1.054<br>1.815          | 0.2501<br>0.3499<br>0.6938           | 13.75<br>1.99<br>54.60          | 333.34<br>299.72<br>262.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 133.25<br>24.01<br>309.32          | 0.685                   | 1.42                 | 1.08<br>2.45         | 6560<br>4632         | 0              | 1620<br>56          | 4                  |                    |
| 85/74 (1995 0116)<br>136793 (1997 AQ18)<br>162567 (2000 RW37)<br>175706 (1996 FG3)<br>370061 (2000 YO29)<br>446804 (1999 VN6) | 1.147<br>1.248<br>1.054<br>1.815<br>1.733 | 0.2501<br>0.3499<br>0.6938<br>0.3703 | 13.75<br>1.99<br>54.60<br>19.48 | 333.34<br>299.72<br>262.66<br>58.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 133.25<br>24.01<br>309.32<br>43.60 | 0.685<br>0.556<br>1.091 | 1.42<br>3.07<br>2.38 | 1.08<br>2.45<br>2.28 | 6560<br>4632<br>5982 | 0              | 1620<br>56<br>269   | 4                  |                    |

You can then click on the name of any one of these objects for more details.

| / }> Th 🔇 🎯                     | Asi 🔇 Sei 🔇 Asi                                                                                                                                                                                                                         | htt 🚺                                                                                                                                                                                                                                                                     | JPL 🚺                                                                                                                                                                                                                                                                         | ×                                                                                                                                                       | SBI                                                                                                                                 | 🔥 My 🔳 Ma 🔳 Co M Int 🖪 Fac                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ra 🗸 🐈 Cla 🖉 🖬 Fac 📢 Asi 🚺 Mi 🔓 asi 🐨 Ini 🌀 im 🐨 As 📢 Ho 🚛 Ho 💼 🖆 📼                                                                                                                                                                                                                                                          |              |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| $\leftrightarrow \rightarrow c$ | 🕽 🗋 ssd.jpl.nasa.g                                                                                                                                                                                                                      | ov/sbdb                                                                                                                                                                                                                                                                   | o.cgi?ss                                                                                                                                                                                                                                                                      | str=14                                                                                                                                                  | 1402                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ☆ 🌮                                                                                                                                                                                                                                                                                                                          | - <u>i</u> = |
| 1                               | show orbit diagram ]                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                               |                                                                                                                                                         |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                              | *            |
| ſ                               | Orbital Elements at E   Reference: 141   Element Value   a 1.7154691   q 1.025658   i 1.141802   node 159.25814   node 159.25814   period 2457397.1070   period 22.057800   n 4.3866168   Q 2.4052724   show covariance maths 2.0010120 | Epoch 24:<br>44 (helio<br>e<br>50486474<br>307695592<br>50486474<br>00651533<br>46492538<br>98502354<br>09675081<br>36889569<br>17826724<br>57071783)<br>779305943<br>2.255<br>76791533<br>94321415<br>4<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 57400.5<br>centric<br>Uncerta<br>2<br>3<br>4<br>1<br>3<br>5<br>3<br>5<br>4<br>1<br>1<br>2<br>3<br>4<br>1<br>1<br>2<br>3<br>4<br>1<br>1<br>2<br>3<br>4<br>1<br>1<br>3<br>5<br>3<br>5<br>3<br>5<br>3<br>5<br>3<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | (2016-<br>eclipti<br>ainty (1<br>.1349e<br>.6461e<br>.3811e<br>8.03e-(<br>.3229e<br>.1488e<br>.104e-<br>.6192e<br>.1812e<br>3.234e-<br>.3137e<br>.308e- | Jan-13.<br>c J2000<br>1-sigma<br>+08<br>+09<br>+08<br>06<br>+05<br>+05<br>+05<br>+05<br>+05<br>+05<br>+05<br>+06<br>09<br>+10<br>09 | b) TDB<br># obs. used (trial) 425<br># data-arc span 6739 days (<br>first obs. used (1991-02-13)<br>au last obs. used 2009-07-27<br>au last obs. used 2009-07-27<br>deg continon code 0<br>fir RMS .48<br>deg continon code 0<br>fir RMS .48<br>deg data source ORB<br>producer Otto Matic<br>solution date 2014-Juno5<br>4<br>degd<br>au<br>yr<br>yr<br>yr<br>yr<br>yr<br>b) TDB<br>au last obs. used (1000 - 2,59374)<br>au continon code 0<br>Additional Information<br>y jup = 4.064 | aers<br>18.45 yr)<br>6<br>20.54:57                                                                                                                                                                                                                                                                                           |              |
|                                 | Dhysical Parameter Ta                                                                                                                                                                                                                   | blo                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                               | ernenita                                                                                                                                                | striiysi                                                                                                                            | cal Parameters   Discovery Circumstances   Cic                                                                                                                                                                                                                                                                                                                                                                                                                                           | sexploach bata j                                                                                                                                                                                                                                                                                                             |              |
|                                 | Parameter                                                                                                                                                                                                                               | Symbol                                                                                                                                                                                                                                                                    | Value                                                                                                                                                                                                                                                                         | Units                                                                                                                                                   | Sigma                                                                                                                               | Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Notes                                                                                                                                                                                                                                                                                                                        |              |
|                                 | absolute magnitude                                                                                                                                                                                                                      | н                                                                                                                                                                                                                                                                         | 18.6                                                                                                                                                                                                                                                                          | mag                                                                                                                                                     | n/a                                                                                                                                 | MPO219630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                              |              |
|                                 | diameter                                                                                                                                                                                                                                | diameter                                                                                                                                                                                                                                                                  | 0.6                                                                                                                                                                                                                                                                           | km                                                                                                                                                      | n/a                                                                                                                                 | Delbo et al. (2003). Icarus, v. 166, pp. 116-130                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                              |              |
|                                 | rotation period                                                                                                                                                                                                                         | rot_per                                                                                                                                                                                                                                                                   | 2.2656                                                                                                                                                                                                                                                                        | h                                                                                                                                                       | n/a                                                                                                                                 | LCDB (Rev. 2016-February); Warner et al., 200                                                                                                                                                                                                                                                                                                                                                                                                                                            | Result based on less than full coverage, so that the period may be wrong by 30 percent or so.<br>Published Reference List:<br>[Pravec, P.; Wolf, M.; Sarounova, L. (2000) http://www.asu.cas.cz/~ppravec/neo.htm]<br>[Koehn, B.W.; Bowell, E.L.G.; Skiff, B.A.; Sanborn, J.J.; et al. (2014) Minor Planet Bul. 41, 286-300.] |              |
|                                 | geometric albedo                                                                                                                                                                                                                        | albedo                                                                                                                                                                                                                                                                    | 0.14                                                                                                                                                                                                                                                                          |                                                                                                                                                         | n/a                                                                                                                                 | Delbo et al. (2003). Icarus, v. 166, pp. 116-130                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                              |              |
|                                 | SMASSII spectral type                                                                                                                                                                                                                   | spec_B                                                                                                                                                                                                                                                                    | С                                                                                                                                                                                                                                                                             |                                                                                                                                                         | n/a                                                                                                                                 | Binzel et al. (2004) Icarus 170, 259-294                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                              |              |
|                                 | 14402 (1991 DB)<br>Reference: 20000418/N<br>show close-approach d<br>[Ephemens   Orbit Dia<br>AROLIT SSD                                                                                                                                | Discover<br>lumbers.a<br>ata ]<br>agram   Or                                                                                                                                                                                                                              | red 199<br>irc<br>rbital Ele                                                                                                                                                                                                                                                  | ements                                                                                                                                                  | o-18 by<br>s   Physi                                                                                                                | Helin, E. F. at Palomar<br>Last Updated: 2004-04-19<br>cal Parameters   Discovery Circumstances   Cic<br>DBUQCOV/COOPDBIGHT   CLOSSARY                                                                                                                                                                                                                                                                                                                                                   | se-Approach Data ]                                                                                                                                                                                                                                                                                                           | :44 PM       |

Another interesting factor is to look at the close approach data to see the next time the object will pass close to Earth. Select "show close approach data".

| > Thi 🖉 🚳 Asi 🤇   | Sei 🗸 📚 Asi 🖉 🎆 htt   | JPL X X               | 🖁 SBI 🛛 🦲 My 🖲 M                                                                                                | la 🔚 Co M Int 🛛       | F Fac Rai         | Cla 🗸 😭 Fac 🗸 🚺   | Asi 🚺 M: 🕻 G      | ast W Inr G im W           | As 🚺 Hc 🚛 H          |                      |                     |
|-------------------|-----------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------|-------------------|-------------------|-------------------|----------------------------|----------------------|----------------------|---------------------|
| > C 🗋 ss          | a.jpi.nasa.gov/st     | ab.cgi:sstr=1440      | J2;0Id=0;0rb=0;c                                                                                                | ov=0;iog=0;cad=       | T#cad             |                   |                   |                            |                      | 22                   |                     |
| 14402 (1991 DB)   | Discovered 1          | 991-Feb-18 by He      | elin, E. F. at Palon                                                                                            | har                   |                   |                   |                   |                            |                      |                      |                     |
| Reference: 20000  | 418/Numbers.arc       | La                    | st Updated: 2004-04                                                                                             | -19                   |                   |                   |                   |                            |                      |                      |                     |
|                   |                       |                       |                                                                                                                 |                       |                   |                   |                   |                            |                      |                      |                     |
| hide close-approa | ch data j             |                       |                                                                                                                 |                       |                   |                   |                   |                            |                      |                      |                     |
| Close-Approach L  | Jatasorted by Date/1  | Time (TDB)            |                                                                                                                 |                       |                   |                   |                   |                            |                      |                      |                     |
| Date/Time (TDB)   | (days_HH:MM) Bod      | Nominal Distance (au) | Minimum Distance (au)                                                                                           | Maximum Distance (au) | V-relative (km/s) | V-infinity (km/s) | JD (TDB)          | Time Uncertainty (minutes) | Semi-major axis (km) | Semi-minor axis (km) | range-LO            |
| 1937-Jun-16 02:23 | < 00:01 Eart          | h 0.463355966635277   | 0.463352646583069                                                                                               | 0.463359286694413     | 17.6446161862073  | 17.6442902824316  | 2428700.599649185 | 0.0569114196357356         | 182.095134449464     | 18.444280098196      | -22.6144            |
| 1946-Jun-07 14:51 | < 00:01 Eart          | h 0.358273443295964   | 0.358270675183417                                                                                               | 0.358276211418952     | 13.9360036326192  | 13.9354699687462  | 2431979.119086348 | 0.0706063928003682         | 157.312755487426     | 16.6197237798248     | -27.7425            |
| 1955-May-27 05:33 | < 00:01 Eart          | h 0.277620257645983   | 0.277618238394896                                                                                               | 0.277622276910095     | 10.5108847478593  | 10.5099716006522  | 2435254.731462907 | 0.0998570750114007         | 119.543125820108     | 13.523958796267      | -32.3100            |
| 964-Apr-29 00:37  | < 00:01 Eart          | h 0.216158009303871   | 0.216156458881043                                                                                               | 0.216159559726563     | 7.57989295768263  | 7.57826656823809  | 2438514.525730700 | 0.171309638966626          | 66.8951546485557     | 7.06646330708253     | -21.885             |
| 973-Mar-30 22:17  | < 00:01 Eart          | h 0.155884676013022   | 0.155883516610281                                                                                               | 0.155885835418781     | 7.01666124326854  | 7.0142248138769   | 2441772.428806975 | 0.0890725234356942         | 31.9344641212424     | 4.92334139135907     | 25.0236             |
| 982-Mar-24 07:07  | < 00:01 Eart          | h 0.120419310490097   | 0.120418792610908                                                                                               | 0.120419828371866     | 7.67878466102116  | 7.67590258626598  | 2445052.796308222 | 0.0417624275680204         | 19.9574250795672     | 6.3026535021424      | 51.2176             |
| 1991-Mar-21 16:37 | < 00:01 Eart          | h 0.107070535013012   | 0.107070289015182                                                                                               | 0.107070781011397     | 8.23848167725599  | 8.23546050949212  | 2448337.192655893 | 0.025831142994746          | 10.4438562745796     | 6.48483616438499     | 56.4699             |
| 2000-Mar-18 21:49 | < 00:01 Eart          | h 0.101829830329531   | 0.101829628743459                                                                                               | 0.101830031915553     | 8.79770310868947  | 8.79472842040609  | 2451622.409037049 | 0.0209687658339651         | 7.31242249175905     | 3.94229152666776     | 0.87758             |
| 009-Mar-15 22:31  | < 00:01 Eart          | h 0.113002606757871   | 0.11300238594362                                                                                                | 0.113002827572066     | 9.88748992622978  | 9.88510491612675  | 2454906.438065540 | 0.018760034767901          | 8.68100031827626     | 5.50302451934395     | -7.8325             |
| 018-Mar-11 17:42  | < 00:01 Eart          | h 0.163064208720997   | 0.163063853369928                                                                                               | 0.163064564072087     | 11.7684682706506  | 11.7670797274689  | 2458189.237246063 | 0.0186204548383697         | 16.3629991760579     | 7.70426348789756     | -26.976             |
| 027-Mar-06 18:35  | < 00:01 Eart          | h 0.25742861682278    | 0.257428053605636                                                                                               | 0.257429180040009     | 14.4871504581094  | 14.4864359893031  | 2461471.274205507 | 0.0187910790268552         | 26.8135202991052     | 8.15430425837648     | -18.646             |
| 036-Feb-29 12:30  | < 00:01 Eart          | h 0.369494003703912   | 0.369493271361318                                                                                               | 0.369494736046494     | 17.6462063031064  | 17.6457976463925  | 2464753.020831252 | 0.0179985903744357         | 35.8786809833568     | 8.40243257256283     | -13.393             |
| 083-Jun-17 10:25  | < 00:01 Eart          | h 0.432345871218661   | 0.432344651194118                                                                                               | 0.432347091243631     | 16.7989933826792  | 16.7986265208527  | 2482027.933861794 | 0.0265756417273468         | 62.2628233651136     | 15.8312483378386     | -15.762             |
| 1092-Jun-06 19:21 | < 00:01 Eart          | h 0.326792735081302   | 0.326791613857066                                                                                               | 0.32679385630613      | 12.8600760193811  | 12.8594419932848  | 2485305.305937035 | 0.0346306466700311         | 57.7962780688232     | 13.7353731252338     | -22.192             |
| 101-May-24 21:15  | < 00:01 Eart          | h 0.250812108634333   | 0.250811199855543                                                                                               | 0.250813017414066     | 9.29588091585659  | 9.29473803751219  | 2488578.385703294 | 0.0528857150362146         | 46.273337326053      | 10.4006896061302     | -26.939             |
| 110-Apr-17 10:45  | < 00:01 Eart          | h 0.197332466498482   | 0.197331629907025                                                                                               | 0.197333303088756     | 6.90477000129792  | 6.90281419379414  | 2491827.948118840 | 0.0712864505677082         | 27.0232042881545     | 4.18673609302473     | -4.8915             |
| 2119-Apr-01 09:38 | < 00:01 Eart          | h 0.153586666268849   | 0.153586029772384                                                                                               | 0.153587302765535     | 6.98740449701878  | 6.98492124877436  | 2498098.901281112 | 0.0469073628467461         | 18.4636194744794     | 4.54628414585358     | 23.4838             |
| 128-Mar-25 07:01  | < 00:01 Eart          | h 0.121523160260174   | 0.121522755545566                                                                                               | 0.121523564975607     | 7.7060702733521   | 7.70322449851898  | 2498379.792396837 | 0.0361185697388053         | 16.1295868238481     | 6.32381324238132     | 52.3136             |
| 137-Mar-22 08:08  | < 00:01 Eart          | h 0.107699427456392   | 0.107699180021286                                                                                               | 0.107699674892783     | 8.40789855814644  | 8.40495557677748  | 2501663.838922627 | 0.0361170223631819         | 20.1257131654487     | 7.24329828500973     | 81.9700             |
| 146-Mar-19 17:22  | < 00:01 Eart          | h 0.107793183207412   | 0.107792878786035                                                                                               | 0.10779348763591      | 9.27111002901676  | 9.2684434664091   | 2504948.223583674 | 0.0456219538649113         | 38.374087729618      | 7.49003093901066     | -71.3493            |
| 155-Mar-16 23:09  | < 00:01 Eart          | h 0.129206847463485   | 0.129205552802506                                                                                               | 0.129208142143759     | 10.4684097862755  | 10.4664396621283  | 2508232.464818692 | 0.0646651737295045         | 79.3206416940292     | 7.68557554876155     | -47.684             |
| 164-Mar-11 07:38  | < 00:01 Eart          | h 0.19869945874238    | 0.198696634908713                                                                                               | 0.198702282581856     | 12.778151256451   | 12.777101797436   | 2511514.818344277 | 0.0729283849267691         | 136.694174388026     | 8.04793316509224     | -25.477             |
| 173-Mar-05 23:01  | < 00:01 Eart          | h 0.303758644227447   | 0.303754873924716                                                                                               | 0.303762414529765     | 15.838718150683   | 15.8381643273189  | 2514796.458776473 | 0.0692145359744154         | 182.397612030789     | 8.46645529856546     | -14.532             |
| 173-Jul-03 06:23  | 00:01 Eart            | h 0.488195566996      | 0.488194516546708                                                                                               | 0.488196617450861     | 4.54708225627304  | 4.54588180911975  | 2514915.765835186 | 1.13979205891563           | 47.3734810148095     | 13.6975309477151     | -71.6490            |
| 2182-Feb-27 20:27 | < 00:01 Eart          | h 0.438314182759207   | 0.438309946412293                                                                                               | 0.438318419105955     | 19.6191499358325  | 19.6188400868486  | 2518077.352352447 | 0.0603175363680134         | 209.821745356749     | 8.97829558408752     | -8.93051            |
| [Enhemeris LOr    | hit Diagram I Orbital | Elements I Physical   | Parameters   Discou                                                                                             | erv Circumstances I   | Close-Approach F  | )ata 1            |                   |                            |                      |                      | -                   |
| Concinenta   On   | on oragram ( orbital  | cionionio i involcar  | , alametera i Discov                                                                                            | ory onconstances [    | SISSE Approach E  |                   |                   |                            |                      |                      |                     |
| ABOUT SSD         | CREDITS/A             | WARDS P               | RIVACY/COPYRIGHT                                                                                                | GLOSSAF               |                   | 3                 |                   |                            |                      |                      |                     |
| FIRSTGO           | W                     | 2016-Ma               | r-04 17:47 UT                                                                                                   | Site Mana             | ger: Ryan S. Park | (<br>- la - ultra |                   | _                          |                      |                      |                     |
|                   |                       |                       |                                                                                                                 |                       |                   |                   |                   |                            |                      |                      | _                   |
|                   | 6                     | 🧔 💌                   | - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 |                       |                   |                   |                   | 🥢 🦑 👝 🕴 🙀                  | 🎄 🔮 🗷 🔤 🕏            | i 🦤 🛱 🌵 .all         | 12:48 PI<br>3/4/201 |

For example 14402 will next pass within 0.163 AU of Earth in 2018: