

Designing using Codeblocking in Tinkercad

Gr. 7 - Understanding Structures & Mechanisms

Codeblocks	Coding Tool Tinkercad
	Cross-curricular Math
Big Ideas Science • Structures have a purpose • Inquiry	 Specific Expectations Science 1.1 - evaluating importance in factors to be considered 2.6 - use appropriate science and
Math Mathematical Process Number Sense integers 	technology vocabulary
 Number Sense - Integers Measurement - converting units Geometry & Spatial Sense - location and movement 	 Number Sense identify and compare integers found in real-life contexts represent and order integers Measurement solve problems that require conversion of units of area Geometry & Spatial Sense plotting points identify, perform, and describe dilatations create an analyze designs

Description

This lesson is a continuation from their exploration, and adds design and ideas of a structure that is useful to them. Students will use code to create a structure which has a purpose specific to individuals, society or the economy (e.g., must withstand a load, or force). It can be something which already exists, however must be altered in a way to maximize performance. The end result is a share .gif to explain their structure. Further extensions are suggested.

SUDBURY, ONTARIO, CANADA

Materials

- For each group of 4-5 students
 - 12 pieces of spaghetti, 1 large marshmallow, 1 meter of masking tape
- technology device and internet access to create Tinkercad account (e.g., teacher created account and classroom built)
- Website <u>www.tinkercad.com</u>
- anchor charts with prior learning
- full 100 minute block (more time may be necessary for more intricate designs)

Computational Thinking Skills

Iterative Thinking

• students will be experiences a new form of block coding

Abstraction

• understanding of using x, y, z plane to focus on which makes their design easier

Decomposition

- focusing on one aspects at a time Debugging
 - working on a plan to complete the task

Introduction

- In a circle, **share one** idea they can recall about their experience on Tinkercad (e.g., only one sentence or less)
- Design Thinking lead-in & Challenge (<u>dschool.stanford.edu</u>)
 - prompt them with:
 - IDEATE did you share ideas, did you come together to grow your understanding?
 - PROTOTYPE did you have fail, try again and think of other solutions?
 - 10-minute challenge to understand importance of failing and trying again (design thinking process)
 - build the tallest structure which can support a load with only the materials given - can manipulate all materials, except the marshmallow -
 - debrief similar questions above; importance of failure with innovations
- Discuss **purpose** of the lesson
 - Codeblock a structure that has a specific purpose which is important to them (e.g., keyboard, desk, etc.)
 - recognize design thinking process in finding alternate solutions
- Build success criteria together
 - terminology used, factors and considerations kept in mind, environmental impact, etc.
 - math focus (if applicable)
 - use of computational skills, learning skills

Action

- During Creation, have brief discussions;
 - \circ $\,$ If anyone has tried something that has not worked, and how they fixed it
 - If anyone is noticing patterns, making a plan, making something easier, etc.
 - What have you taken from the Design Challenge to help in your structure creation?

SUDBURY, ONTARIO, CANADA

Consolidation/Extension

- Why is the design thinking process important?
 - \circ $\;$ what is one area you can work on
 - o could build SMART Goals for further design challenges
- Student self and peer reflections on their structures
 - Refer to success criteria to provide descriptive feedback
 - what works well, what could be improved and how
- Extensions
 - showcase their ideas as a gallery walk (e.g., half of the students share, while the other half rotate through a few); could revisit for suggested improvements
 - 3D print the structure; check with your school-board for this option
 - physical build using loose parts and recycled items (e.g., students find objects that help them build using a specific scale)

Assessment

- Focus on the co-created success criteria and big ideas
- Triangulation of evidence; choice of what works best for your students:

Conversations

- digital recordings as a reflection piece
- photographs of students working through the process

Observations

- use of digital screenshots to document learning
- teacher anecdotal notes from their exploration
- learning skills, computational thinking

Products

- shared .gif, presentation
- loose parts structure
- writing about the process

Additional Resources

- Websites
 - Tinkercad https://www.tinkercad.com/learn/#/learn/codeblocks
 - Scratch <u>https://scratch.mit.edu/</u>