Radiometric Dating and Half Life

Radiometric Dating

Radiometric Dating is a method by which rocks and other objects can be dated by using the known *decay rate* of radioactive decay.

It compares the proportion of a naturally-occurring isotope in the object to the isotope's decay products.

- Isotopes are versions of the same element with the same number of protons and *different* number of neutrons. For example, a radioactive isotope of ¹²C is ¹⁴C.
- Radioactive isotopes decay, or change, from "parent" into "daughter" spontaneously.

Radioactive Decay

- **Radioactive decay** means that the unstable nucleus of the **parent** isotope changes in some way -- by emitting energetic particles and/or energy -- in order to become a more stable **daughter**.
- This *radioactive decay* occurs a constant rate independent of any physical variables (i.e. pressure, temperature, weathering, chemical environment, presence of EM fields).
- Each isotope has a <u>unique</u> decay rate, and likewise, its own *half-life*.

Half-Life

Decay of a Radioactive Substance

By Kurt Rosenkrantz [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/ 3.0)], via Wikimedia Commons

- The *half-life* is the time required for the original amount of parent isotope to fall to half its initial value $(T_{1/2})$.
- The daughter isotope will likewise increase.
- i.e. after 1 half-life, the ratio of parent:daughter will be 1:1, but after 2 half-lives it will be 1:3.

Half-Life

Number of Half-Lives	Percent of Parent Percent of Daughter		
0	100 0		
1	50 50		
2	25	75	
3	12.5	87.5	
4	6.25	93.75	
5	3.125 96.875		
6	1.5625 99.4375		
7	0.78125 99.21875		

Uranium Decay

•For example, ²³⁸U is a commonly used isotope in radiometric dating. Its final decay product is ²⁰⁶Pb.

- In 4.5 billion years, half of a sample of ²³⁸U will have been converted to ²⁰⁶Pb (i.e. it's half-life is 4.5 billion years).
- Scientists can determine the age of a rock that contains ²³⁸U from the ratio of ²³⁸U to ²⁰⁶Pb in the rock. The age can be calculated more accurately by measuring all the products in the series.

mineral deposit

most of the atoms are not radioactive

atoms of a radioactive isotope

time = 0

atoms of a stable daughter isotope

https://upload.wikimedia.org/wikiversity/en/thumb/4/4b/ Radiometricdatingmineral.png/400px-Radiometricdatingmineral.png

Other Isotopes used in dating rocks

Parent	Daughter	Half-Life (years)	Types of Rock
238U	²⁰⁶ Pb	4.5 billion	mineral zircon, baddeleyite.
⁴⁰ K	⁴⁰ Ar	1.3 billion	micas, feldspars, and hornblendes,
⁸⁷ Rb	⁸⁷ Sr	49 billion	old igneous and metamorphic rocks, lunar samples
²³⁴ U	²³⁰ Th	80,000	ocean-floor sediments

Radiocarbon Dating

- While ¹²C is commonly found in all <u>living things</u>, ¹⁴C is produced when cosmic rays hit nitrogen in the atmosphere.
- Living organisms contain trace amounts of ¹⁴C.
- Radioactive decay of ¹⁴C starts only when an organism dies and decays into ¹⁴N.
 - ¹⁴C's half life is significantly shorter than other radioactive parent isotopes (~ 5730 years)
 - Samples older than 50 000 years have undetectable levels of 14C and other isotopes must be used.

Radiocarbon Dating

Scientists can calculate how long ago a piece of organic material was part of a living plant or animal by comparing the amount of ¹⁴C that remains in the material to the amount of ¹⁴C that exists in similar material in a living plant or animal (with some correction). They can determine this either by measuring the radioactivity in the sample or by measuring the amount of ¹⁴C using a mass spectrometer.

Absolute Dating

Radiometric dating is *absolute dating* because it provides an actual numerical age

or range as opposed to *relative dating* which can only provide a chronological order to events.