

RATE OF CHANGE IN PYTHON

Coding with Python and Mathematics

- Rate of change can be defined as a measure of the change in one quantity with respect to a change in another quantity.
- In the field of STEM these quantities are represented as the dependent (y) and independent (x) variables.
- Think, Pair, Share. "What are some examples of rate of change in your daily life?"

Average rate of change

Secant line

 An average rate of change is a change that takes place over an interval in any given function and corresponds to the slope of a secant line between that interval. (A line that passes through two points on the graph of a relation).

Intro to Python

 Python code is written in a console that looks like this

Coding 101

• Head to an online Python compiler

 Erase everything found in the console, so it is blank

print

- The print function is used to display messages.
- In your console type;

- Then press;
- The result

variables

- We can define variable values within python;
 1 x = 3
- If we then tell the program to print

input

 Assigning a value is fine, but sometimes we want to give the user the ability to set the value via the terminal.

print("x is equal to",x)

Input error!?

Int, float, string

Integers are whole numbers that are + or –

Floats are numbers that contain decimal places (can be + or –)

 Strings are arrangements of one or more characters

In your pods

- Classify each of the following as;
 - Int
 - String
 - Float
 - 10 10.5 Ontario Apple
 - 11 32.5 -4 -4.5 3

Debug

• We can fix our "bug" by adding "int" before

۶ 🛛

• Our code works now!

What would you like the value of x to be?3

Math Operators

1 x = float(input("What would you like the value of x to be?"))
2
3 print("the sum of x and 4 is", x + 4)
4
5 print("the difference of x and 4 is ", x - 4)
6
7 print("the product of x and 4 is", x * 4)
8
9 print("the quotient of x over 4 is", x / 4)
10
11 print("x to the exponent of 4 is ", x**4)
12
13

Square root operator????

What would you like the value of x to be?3 the sum of x and 4 is 7.0 the difference of x and 4 is -1.0 the product of x and 4 is 12.0 the quotient of x over 4 is 0.75 x to the exponent of 4 is 81.0 With your elbow partner discuss how you could find some nth root given these commands.

The challenge

- For this lesson, the focus will be on non-linear relationships. Non-linear relationships have different rates of change over different intervals.
- You may select a situation or search for a data set / graph which is modeled by a quadratic equation. If you are unsure of how to get started, pleas
- Your task is to create a computer program using the Python language that can evaluate the relationship at any two given points and calculates the average rate of change


```
main.py
          +
     print("Welcome to our rate of change calculator")
 1
     print("We will start by outlining the a ,b ,and c values of our quadratic in standard form")
 2
     print("Remember that standard form is ax^2 + bx + c")
 З
     a = float(input("What is the a value of your quadratic?"))
 4
     b = float(input("What is the b value of your quadratic?"))
 5
     c = float(input("What is the c value of your quadratic?"))
  6
 7
     print("We will now evaluate the function at two points.")
 8
 9
     p1 = float(input("What is the x value of your first point?"))
 10
     p2 = float(input("What is the x value of your second point?"))
11
12
    # Calculations for rate of change
13
14
    y_2 = (a^*p_2^{**2} + b^*p_2 + c)
15
    y1 = (a*p1**2 + b*p1 + c)
16
17
     denominator = (p2 - p1)
18
    numerator = (y_2 - y_1)
 19
 20
    print("The rate of change is", numerator/denominator, "feet per second")
 21
```


Terminal output

```
Ľ
    Welcome to our rate of change calculator
    We will start by outlining the a ,b ,and c values of our quadratic in standard form
±
    Remember that standard form is ax^2 + bx + c
٠
    What is the a value of your quadratic?
>_
    -16
    What is the b value of your quadratic?
2
    100
    What is the c value of your quadratic?
    0
    We will now evaluate the function at two points.
    What is the x value of your first point?
    4
    What is the x value of your second point?
    5
    The rate of change is -44.0 feet per second
```


