CONSERVATION OF ENERGY AND ENERGY TRANSFORMATIONS

Types of Energy

There are two different types of energy:

Kinetic Energy: the energy of motion

Potential Energy: the energy of position or deformation

Types of Energy

Elastic	Energy due to deformation, stored by bending, stretching, or compressing matter.
Thermal/Heat	Energy that makes an object hot. Due to the movement of particles.
Radiant	Energy transferred by electromagnetic waves.

Chemical Energy stored in the obonds of matter.	
	chemical
Nuclear Energy stored in an a nucleus.	tom's
Sound Energy transferred by collision of particles.	' the

Law of Conservation of Energy

Energy can neither be created nor destroyed...only transferred from one form

to another.

Energy Transformation Equation Examples

a) When we turn on our flashlight, chemical energy stored in the batteries is converted into light energy.

b) When we move a vehicle, the engine converts the chemical energy stored in the fuel into heat, sound and kinetic energy. Note that the heat and the sound that are produced are not desirable.

Example: Transfer of Gravitational Potential Energy to Kinetic Energy

Mechanical Energy = $\Delta PE+\Delta KE$ =mg $\Delta h+1/2m(\Delta v)^2$

SCIENCE

https://youtu.be/LrRdKmjhOgv

Examples:

 a) Brandan drops a 1.5 kg water balloon from a 14 m high roof. (a) What is the gravitational potential energy of the balloon on the roof?

$$E_{total} = mg\Delta h_1 + 1/2mv_1^2$$

$$E_{total} = (1.5 \text{ kg})(9.8 \text{ N/kg})(14 \text{ m})$$

$$E_{total} = 68.6 \text{ N*m} = 68.66 \text{ J}$$

The gravitational potential energy is 69 J.

b) What is the speed of the balloon when it hits the ground?

```
Etotal = mg\Delta h_2 + 1/2mv_2^2

68.6 J = 0 + 1/2mv_2^2

<u>2(68.6 J)</u> = v_2^2

1.5 kg

91.5 = v_2^2

9.6 = v_2
```

The speed of the balloon is 9.6 m/s.

Example

A 168-g bird has a total mechanical energy of 15 J when flying at a speed of 9.7 m/s, what is the height of the bird above the ground?

Etotal = $mg\Delta h + 1/2mv^2$ 15 J = (0.168 kg)(9.8 m/s²) $\Delta h + \frac{1}{2}(0.168 kg)(9.7 m/s)^2$ <u>15 J - 7.9 J</u> = Δh 1.65 kg*m/s² 4.3 m = Δh The bird is 4.3 m above the ground.

