
Intro to web development

For any web development you will use a combination of three programming languages. HTML, CSS, and

JavaScript. HTML is used to provide the basic structure, CSS or Cascading Styling Sheet provides the

styles, layout, and presentation of the website while JavaScript is used to add advanced functionality

and control the behaviour of various elements. We will be using HTML and CSS for our creation today to

build a functional and professional looking basic website.

Login into your Replit account and click create new. Search HTML and choose the HTML, CSS, JS auto

refresh option. This will automatically create three files. index.html, styles.css, and script.js. The

index.html page will have some code already written in it but for our purposes of learning from the

beginning we’re going to delete all lines of code except for the very first and start fresh. We will need to

keep the name as index.html while working on the Replit site.

The first thing we need to know about HTML is that it uses tags such as <html> and <body>. Tags are

always written between <> and almost always come as a set with a closing tag that has an extra forward

slash </html> or </body>. These tags denote new sections of the page, different data entry types, etc.

every page will begin with the tag <!DOCTYPE html> so when the file is read by the web browser it

knows it’s a webpage written in html.

After this the initial setup of any new page will be written between the <html> tags. on Replit as soon as

you create the opening tag, the closing tag will be automatically created. Write in the <html> tag and

then hit enter then add in the <head> and <body> tags as shown below.

The indentation we see here is very important and tells us that

both the head and body sections of our website are inside of our

html section however are not inside of each other as they are on

the same indentation.

The <head> section of the website is not used for much but

there are two important tags we’re going to use today. The first

is the <title> tag. Whatever is written in the title section will

show up as the title in the tab of your browser. Add in the

<title> tag inside the header. Since it’s a short section you don’t

need to hit enter and can keep the closing tag on the same line.

<title> SNC2D </title>

The other tag we’ll add into the head section of our webpage is the <meta> tag. The Meta tag won’t

contain any information that will appear on the webpage but instead can contain information about the

author and also has important information to help the browser know how to control the dimensions and

scaling. We’re going to always add in the following line exactly.

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<!DOCTYPE html>

<html>

 <head>

 </head>

 <body>

 </body>

</html>

The meta tag is one of the few that has information contained inside the tag itself rather than between

two tags. We will see this a little late on as well with images and to an extent links.

Next, we’ll move on to the body of the webpage. This is where most of our code is going to go. The most

important tag to know to help with our organization is <div>. Have a look at the image below of the

homepage of the Science North website and its code on the right hand side. You can do this exercise

yourself on any page by right clicking and inspecting the code.

This webpage is divided into three very visible sections in the screen shot. The blue header section, light

blue image section, then the info section with the white background. Each division may be subdivided as

well to help with the organization of elements which we’ll see more of as we go. On the right-hand side,

you can see may of the cascading tags in this section are the <div> tag creating many subdivides.

For starters in our body, we’re going to add in five sections to

build our homepage. You can add in one <div> tag and hit enter

to get the auto generated closing tag on a new line then copy

and paste the set 4 more times.

<head>

 <title> SNC2D </title>

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 </head>

<body>

 <div>

 </div>

 <div>

 </div>

 .

 .

 .

</body>

Each set looks the same, so we’ll add in an id for each section to help identify each portion. This will also

be important for when we go to add styles to our page. Add the following ids to match the code below.

Inside the header we’ll use the <h1> tag to add in a header. There

are 6 tags from h1 to h6 dedicated to writing headers, each

getting a bit smaller in text size.

<div id = "header">

 <h1> Climate Change </h1>

</div>

At this point we can hit run on our project, and we’ll see a blank

white page with the word Homepage written on it. Not very

exciting but this is the start of your first ever webpage. Your title

will appear in the tab above as well.

The window to view your webpage is quite small so click the icon

in the right corner that opens it in a new page if you’d like.

At this point we will bring in the 2nd file created for us style.css so

we can start to make our webpage look nicer. Let’s begin again

by deleting all the code and having a fresh start.

In your CSS we will write many rules. Each will consist of a

selector to indicate the section of the doc you are styling as well

as a declaration and value. The selector * is the universal selector

and applies to all elements on the page.

We’ll begin with the universal selector * followed by an opening curly bracket then hit enter to move

the closing bracket to a new line. We’re going to add in two declarations to apply to all sections of our

webpage: box-sizing: border box; and margin: 0;.

* {

 box-sizing: border-box;

 margin: 0;

}

Border-box means that the border is included as part of the total width we eventually give each section.

This helps with alignment. Setting the margin to 0 ensures all sections are up against each other and

there’s no weird spaces throughout your webpage as the margin is the space around each section.

<body>

 <div id = "header">

 </div>

 <div id = "navBar">

 </div>

 <div id = "row1">

 </div>

 <div id = "row2">

 </div>

 <div id = "footer">

 </div>

 </body>

Next, we can add in some colour for our header. I like to use the website https://htmlcolorcodes.com/

to find the perfect colours. Looking at a light grey I’m going to choose the colour with the hex value

F1F1F1 for my header background colour. We can also add in some style for our h1 section as followed.

The first important thing to note here is the difference between

how we’ve identified the two sections. Any section with an id is

identified using the hashtag out front followed by the id name. If

we used div instead then all divs would have the same style

which we don’t want.

In this case I use h1 for the 2nd selector as I plan to have all text

written using h1 to follow this style, no hashtag if it’s not an id.

Looking deeper at the styles themselves you’ll see a box appears next to the colour which is another

great alternative to finding that perfect colour. Background-color and text-align declarations are self

explanatory. As you can see any declaration that is two words is separated by a dash and never a space

and colour is spelt using the American spelling color.

The padding declaration indicates the amount of space to be added around the text itself. As this is the

only text in our header section, we’re effectively deciding the height of this division.

You’ll notice looking at your webpage it’s currently not updating to our new styles. This is because we

have to go back into our html file and link in this style sheet, so it knows to use these styles with the

code we’ve written. Going back to the <head> section of our page, add in the following line.

<link rel="stylesheet" href="style.css">

Now that our style sheet is linked to our code your webpage should update to match the styles we’re

written.

Let’s move on to our navigation bar. Here we’re going to create four links that will eventually take us to

various existing webpages or pages that either we’ve created. For this we need the <a> tag, write in one

and hit tab instead of enter to keep it on the same line then copy and paste so you have four ready to

go.

The <a> tag is another where we’ll write information inside of the tag

itself. In the opening tag after the a, we write href =”url”. Between the tags

we write what we want to show up as text on the webpage. Write in the

following

 Science North

 page 2

 page 3

 page 4

#header {

 background-color: #F1F1F1;

}

h1 {

 text-align: center;

 padding: 20px;

}

<div id = "navBar">

 <a>

 <a>

 <a>

 <a>

 </div>

https://htmlcolorcodes.com/

Here the first link will work and take us to the Science North home page. If you test it out from your

open window, just hit back to return to your page view. The other links are currently placeholders to be

used for future pages we create and won’t take us anywhere now.

For the style of these we can head back into our style.css file and we’re going to add in the selector for

a. Copy in the following.

Background-color, color, text-align, and padding we’ve already talked

about. We can use colour names as well as hex values for colours.

Display: block will make it so each link is a block element and not just

the text, it will include some space around it as well.

Setting the width to 25% and float left will make it so each link block

is a quarter of the page width and the first goes as far left as it can,

the 2nd will go as far left as it can which will make it go up against the

first link. Same for the 3rd and 4th.

With our links we’re going to add in a special selector for what happens when we hover over them with

our cursor. for this we need to add in a:hover. We’re not going to do anything special here just swap the

colours so we’re able to see which link we’re over at any given time. The block display will be really

evident once this is done.

We’re finished with the navigational bar for now. Let’s move ahead to our first row of content. The first

row we are going to sub divide into three columns using the div tag again. The outer rectangle below

represents the division row 1. Inside this are three divisions side by side that we’ll name column.

a {

 display: block;

 background-color: black;

 padding: 20px;

 color: white;

 width: 25%;

 float: left;

 text-align: center;

}

a:hover {

 background-color: white;

 color: black;

}

In your html file add a <div> inside of our row1 and give it the id = “column”. We’ll use this column to

write some text in.

<h2> is a header that’s a bit smaller than <h1>, <p> is for paragraph

and is used for any general text.
 is for a break and moves the

following text to a new line. If we were to simply write the text on a

new line that would not show up as so on our webpage.

Now copy and paste the column div two more times ensuring both

new columns are inside of our row but now inside of each other.

When you refresh you preview window all three columns should

currently be stacked one on top of each another. That means it’s

style time.

Much like we did with the links, we are going to change the width of each division section and float

them next to each other. We’ll change the colours and align the text as we’ve been doing.

Now let’s add in some content to our three columns

Step 1:

<div id = "row1">

 <div id = "column">

 </div>

 </div>

Step 2:

<div id = "row1">

 <div id = "column">

 <h2> Title</h2>

 </div>

 </div>

Step 3:

<div id = "row1">

 <div id = "column">

 <h2>Title</h2>

 <p>

 This is some text

 This is some text

 This is some text

 This is some text

 This is some text

 This is some text

 This is some text

 This is some text

 This is some text

 This is some text

 </p>

 </div>

 </div>

#column {

 background-color: #8d8e94;

 width: 33.33%;

 float: left;

 color: black;

 text-align: center;

 padding: 50px;

}

Moving on to Row 2 where we’ll add some images into our page.

For starters you must find and download an image or two you’d like to use for your webpage. Do an

image search and find one now. In your project workspace on Replit, click the icon to add a new folder

and call it images. Drag and drop your image(s) into this folder. The folder is not necessary but an

important aspect of organization.

<div id = "column">

 <h2> What is Climate Change </h2>

 <p>

 Climate change refers to long-term shifts

 in temperatures and weather patterns.

 When looking at the history of the Earth we

 see there have been natural shifts over time,

 but since the 1800s human activity has

 been the main cause of climate change.

 </p>

</div>

<div id = "column">

 <h2> What are the causes? </h2>

 <p>

 The primary driver of climate change is the

 burning of fossil fuels like coal, oil, and gas.

 Burning these creates greenhouse gas emissions

 which change our global climate by damaging

 the protective ozone layer in our atmosphere,

 and trapping in the sun’s heat making it hotter.

 </p>

</div>

<div id = "column">

 <h2> What can be done? </h2>

 <p>

 To combat the increase of greenhouse gases

 global leaders have held conventions and

 implemented sustainable development goals

 among other changes. The biggest of these

 changes is the switch to sustainable energy

 sources like solar and wind over fossil fuels.

 </p>

</div>

Inside our Row2 add another <div> with the id picture. Inside this div we are going to use the tag.

This is another tag where the info goes inside so there is no closing tag to pair with this one. It might

seem strange to create a whole other division for the image however it’s much easier to arrange

divisions than any other element.

After img we want to write src = “name of the image”. Because our image in is a folder we write

foldername/imagename.extension. This is followed by what shows up as the alternate text in case there

is an issue. The entire block of code looks like this:

I’ve used an image of the earth and have

named it earth.jpg and saved it in my images

folder.

Going to the styles now we’re going to centre

this image in our row and make it exactly half

of the row. We do this in two steps.

First set the picture division to have a width of 50%. It will become 50% of row2’s width since it’s inside

of row2. Row2 is 100% of the page width as we never changed its width so the picture division will be

half the page. After this we will set the img itself to be a width of 100%. This will make it 100% the width

of the division it’s in and not 100% of the page width. We’ll also want to set the background of the row

to a certain colour as half of it currently won’t be covered.

Setting the margin to auto will centre the

image as it will ensure the margin is the same

on either side.

Finally, we finish this page with the footer

division. In the footer for now simply add:

<h1> Thank you for visiting </h1>

Since it’s an h1 header the styling is already

taken care of in the CSS. Add a background

colour for the id footer and your first

webpage is complete.

<div id = "row2">

 <div id = "picture">

 </div>

</div>

#row2 {

 background-color: #F8F8F8;

}

#picture {

 width: 50%;

 margin: auto;

}

img {

 width: 100%;

}

Making a website

In your project workspace create a new folder called page2. Click on the 3 dots next to your html and css

files and duplicate them. Drag them into the page 2 folder and rename them to page2.html and

style2.css. Inside the page2 folder create a new images folder and put an image inside of this folder to

be displayed as well.

Open the page2.html file inside the head division, in the link tag change the file name to style2.css then

inside the header division change homepage to say Page 2. This will let us know that the links are

working as it will look slightly different from the homepage.

Go back to your original index.html file and locate our links, the <a> tags. Where it says url in quotations

next to page 2, change that to say the foldername/filename.html much like we did for the photo earlier.

 page 2

When you click on this link now it in the preview of our homepage it will take us to the second page. In

the page2.html file lets change one of the links to take us back to the homepage. In order to do this we

have to be able to go backwards a bit. Instead of going into a new folder we have to tell the code in

order to find the index.html file we must first go out of the folder we’re in then open the index file. We

do that by writing two dots before the forward slash. The code for the link back to the homepage in the

page2.html should look like:

 Homepage

Follow the same steps and add in a 3rd page. When linking between pages we’ll have to go out of the

folder we’re in then into a new folder so it will look like ../foldername/filename.html.

Congratulations you have a working website made entirely from scratch. The exciting thing is there are

1000s of possibilities now that you can do to really make a more professional looking webpage. To help

you as you get started an excellent resource is:

https://www.w3schools.com/html/default.asp

https://www.w3schools.com/css/default.asp

Here you can find many advanced styling options, we’ve only scratched the surface in this tutorial. There

are so many resources online to help as well so get creative because if you can imagine it, you can create

it.

Follow this link to view a sample page created using this tutorial: https://replit.com/@MacSTA/Science-

North-Webpage?v=1

https://www.w3schools.com/html/default.asp
https://www.w3schools.com/css/default.asp
https://replit.com/@MacSTA/Science-North-Webpage?v=1
https://replit.com/@MacSTA/Science-North-Webpage?v=1

Your Task

In order to finish your website, you need at least Page 2 to have some unique content. For this you must

research and report on one natural and one human activity driving climate change and the role Canada

plays in these activities wherever possible. Try to be unique in both your activities of choice and your

page development.

You can begin by simply keeping the same layout as the homepage and changing the text or starting the

page from scratch with an entirely new look. This is your chance to let your creativity shine through.

