

Kienamatics and the Microbit	Grade 11 and 12 Physic					
Worksheet						
Define the following terms in your own w	ords:					
a. Displacement1. Velocity						
1. Acceleration						
What is the difference between velocity a	ind speed?					
Why is it important to consider direction velocity?	when measuring displacement and					
Using CreateAI, you trained a model to rewalking vs. jumping)	ecognize two types of motion (e.g.,					
a. What features did you use to	distinguish between the motions?					
b. How many samples did you c	ollect for each motion?					

c. How accurate was your model in recognizing the motions? What could improve its accuracy?

Graph the acceleration data for one of your motions.

Graph:

Use the following grid, to plot your acceleration data. Place time (seconds) on the horizontal axis (x-axis) and acceleration (m/s^2) on the vertical axis (y-axis). Fill in the cells with your data points and connect them to visualize how acceleration changes over time.

	,00000										
	0	1	2	3	4	5	6	7	8	9	10
20											
15 10											
5											
0											
-5											
-10											
-15											
-20											

	NORTH NORD
a.	What patterns do you notice?

b. How does the graph reflect changes in velocity?

What real-world applications can you think of for this kind of motion detection?